Jo Cleaning Products Version No: 5.1.1.1 Safety Data Sheet according to WHS and ADG requirements Issue Date: **01/07/2020** Print Date: **01/05/2021** L.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING # Product Identifier Product name Brake Cleaner Synonyms Not Available Proper shipping name PETROLEUM DISTILLATES, N.O.S. or PETROLEUM PRODUCTS, N.O.S. (contains solvent naphtha petroleum, light aliphatic and benzene) Other means of identification Not Available # Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Not Available # Details of the supplier of the safety data sheet | Registered company name | Jo Chemical Products | |-------------------------|--| | Address | 28 Munro Avenue Kirrawee NSW 2232 | | Telephone | +61 2 9545 6311 (9am-5pm, Monday - Friday) | | Fax | +61 2 9545 6311 | | Website | www.joaustralia.com.au | | Email | info@joaustralia.com.au | # **Emergency telephone number** | Association / Organisation | Not Available | |-----------------------------------|--| | Emergency telephone numbers | +61 2 9545 6311 (9am-5pm, Monday - Friday) | | Other emergency telephone numbers | Not Available | # **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture # HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | S5 | |--------------------|--| | Classification [1] | Flammable Liquid Category 2, Skin Corrosion/Irritation Category 2, Reproductive Toxicity Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Aspiration Hazard Category 1, Acute Aquatic Hazard Category 2, Chronic Aquatic Hazard Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | Label elements Hazard pictogram(s) SIGNAL WORD | DANGER # Hazard statement(s) | ` ' | | |------|--| | H225 | Highly flammable liquid and vapour. | | H315 | Causes skin irritation. | | H361 | Suspected of damaging fertility or the unborn child. | | H336 | May cause drowsiness or dizziness. | | H373 | May cause damage to organs through prolonged or repeated exposure. | | H304 | May be fatal if swallowed and enters airways. | | H411 | Toxic to aquatic life with long lasting effects. | # Supplementary statement(s) Not Applicable Version No: 5.1.1.1 Jo Brake Cleaner Issue Date: 01/07/2020 Print Date: 01/05/2021 # Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|---| | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | P260 | Do not breathe dust/fume/gas/mist/vapours/spray. | | P271 | Use only outdoors or in a well-ventilated area. | | P281 | Use personal protective equipment as required. | | P240 | Ground/bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use only non-sparking tools. | | P243 | Take precautionary measures against static discharge. | | P273 | Avoid release to the environment. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | # Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. | |----------------|--| | P308+P313 | IF exposed or concerned: Get medical advice/attention. | | P331 | Do NOT induce vomiting. | | P362 | Take off contaminated clothing and wash before reuse. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | P312 | Call a POISON CENTER or doctor/physician if you feel unwell. | | P391 | Collect spillage. | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|--| | P405 | Store locked up. | # Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. # SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS # Substances See section below for composition of Mixtures # Mixtures | CAS No | %[weight] | Name | | |-------------|-----------|--|--| | 64742-89-8. | 60-100 | solvent naphtha petroleum, light aliphatic | | | 110-54-3 | 10-30 | <u>n-hexane</u> | | | 71-43-2 | <0.1 | <u>benzene</u> | | # **SECTION 4 FIRST AID MEASURES** # Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | Version No: 5.1.1.1 ## Jo Brake Cleaner Issue Date: 01/07/2020 Print Date: 01/05/2021 # Ingestion - If swallowed do NOT induce vomiting. - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Observe the patient carefully. - ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - ▶ Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. - Seek medical advice - Avoid giving milk or oils - Avoid giving alcohol. - If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. # Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Following acute or short term repeated exposures to n-hexane: - Large quantities of n-hexane are expired by the lungs after vapour exposure (50-60%). Humans exposed to 100 ppm demonstrate an n-hexane biological half life of 2 hours. - Initial attention should be directed towards evaluation and support of respiration. Cardiac dysrhythmias are a potential complication. ### INGESTION • Ipecac syrup should be considered for ingestion of pure hexane exceeding 2-3ml/kg. Extreme caution must be taken to avoid aspiration since small amounts of n-hexane intratracheally, produce a severe chemical pneumonitis. [Ellenhorn and Barceloux: Medical Toxicology] BIOLOGICAL EXPOSURE INDEX - BEI BEIs represent the levels of determinants which are most likely to be observed in specimens collected in a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the Exposure Standard (ES or TLV). Determinant Index Sampling Time Comments 1. 2,5-hexanedione in urine 5 mg/gm creatinine End of shift NS 2. n-Hexane in end-exhaled air SQ NS: Non-specific determinant; Metabolite observed following exposure to other materials. SQ: Semi-quantitative determinant; Interpretation may be ambiguous - should be used as a screening test or confirmatory test. For acute or short term
repeated exposures to petroleum distillates or related hydrocarbons: - Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. - Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology] # **SECTION 5 FIREFIGHTING MEASURES** # **Extinguishing media** - ▶ Foam. - Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. - Water spray or fog. - Alcohol stable foam. - Dry chemical powder. - Carbon dioxide. Do not use a water jet to fight fire. # Special hazards arising from the substrate or mixture Fire Incompatibility Fire Fighting Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water course. - Consider evacuation (or protect in place). - Fight fire from a safe distance, with adequate cover. - If safe, switch off electrical equipment until vapour fire hazard removed. - Use water delivered as a fine spray to control the fire and cool adjacent area. - Avoid spraying water onto liquid pools. - Do not approach containers suspected to be hot. - If safe to do so, remove containers from path of fire. # Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat, flame and/or oxidisers. - Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). # Fire/Explosion Hazard carbon dioxide (CO2) Combustion products include: other pyrolysis products typical of burning organic material. **Contains low boiling substance:** Closed containers may rupture due to pressure buildup under fire conditions. May emit clouds of acrid smoke Issue Date: 01/07/2020 Print Date: 01/05/2021 HAZCHEM 3YE # **SECTION 6 ACCIDENTAL RELEASE MEASURES** # Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 # Methods and material for containment and cleaning up # Minor Spills - ▶ Remove all ignition sources. - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - Contain and absorb small quantities with vermiculite or other absorbent material. - ▶ Collect residues in a flammable waste container. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - Consider evacuation (or protect in place). - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Water spray or fog may be used to disperse /absorb vapour. - Contain spill with sand, earth or vermiculite. - Use only spark-free shovels and explosion proof equipment. - Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. Chemical Class: aromatic hydrocarbons For release onto land: recommended sorbents listed in order of priority. | SORBENT
TYPE RANK APPLICATION COLLECTION LIMITATIONS | | |---|--| |---|--| # Major Spills | Feathers - pillow | 1 | throw | pitchfork | DGC, RT | |---|---|--------|-----------|---------------| | cross-linked polymer - particulate | 2 | shovel | shovel | R,W,SS | | cross-linked polymer- pillow | 2 | throw | pitchfork | R, DGC, RT | | sorbent clay - particulate | 3 | shovel | shovel | R, I, P, | | treated clay/ treated natural organic - particulate | 3 | shovel | shovel | R, I | | wood fibre - pillow | 4 | throw | pitchfork | R, P, DGC, RT | # LAND SPILL - MEDIUM LAND SPILL - SMALL | cross-linked polymer -particulate | | blower | skiploader | R, W, SS | |---|---|--------|------------|-----------------| | treated clay/ treated natural organic - particulate | 2 | blower | skiploader | R, I | | sorbent clay - particulate | 3 | blower | skiploader | R, I, P | | polypropylene - particulate | 3 | blower | skiploader | W, SS, DGC | | feathers - pillow | 3 | throw | skiploader | DGC, RT | | expanded mineral - particulate | 4 | blower | skiploader | R, I, W, P, DGC | # Leaend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** # Precautions for safe handling # Safe handling - Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers Page **5** of **14** Issue Date: 01/07/2020 Version No: 5.1.1.1 Print Date: 01/05/2021 # Jo Brake Cleaner Contains low boiling substance: Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately. Check for bulging containers. - Vent periodically - Always release caps or seals slowly to ensure slow dissipation of vapours - DO NOT allow clothing wet with material to stay in contact with skin - Electrostatic discharge may be generated during pumping this may result in fire. - Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then $\leq 7 \text{ m/sec}$). - Avoid splash filling. - Do NOT use compressed air for filling discharging or handling operations. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked - Avoid smoking, naked lights, heat or ignition sources. - ▶ When handling, **DO NOT** eat, drink or smoke - Vapour may ignite on pumping or pouring due to static electricity. - DO NOT use plastic buckets - ▶ Earth and secure metal containers when dispensing or pouring product. - Use spark-free tools when handling. - Avoid contact with incompatible materials. - Keep containers securely sealed. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. Even with proper grounding and bonding, this material can still accumulate an electrostatic charge. If sufficient charge is allowed to accumulate, electrostatic discharge and ignition of flammable air-vapour mixtures can occur. - Store in original containers in approved flame-proof area. - No smoking, naked lights, heat or ignition sources. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - Other information Keep containers securely sealed. - Store away from incompatible materials in a cool, dry well ventilated area. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storage and
handling recommendations contained within this SDS. # Conditions for safe storage, including any incompatibilities - Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) - Suitable container For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages Not Available In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. Storage incompatibility Avoid reaction with oxidising agents # **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** 1,100 [LEL] ppm # **Control parameters** # OCCUPATIONAL EXPOSURE LIMITS (OEL) # INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|--|---------------------------|-------------------|---------------|---------------|---------------| | Australia Exposure Standards | solvent naphtha petroleum, light aliphatic | Oil mist, refined mineral | 5 mg/m3 | Not Available | Not Available | Not Available | | Australia Exposure Standards | n-hexane | Hexane (n-Hexane) | 72 mg/m3 / 20 ppm | Not Available | Not Available | Not Available | | Australia Exposure Standards | benzene | Benzene | 3.2 mg/m3 / 1 ppm | Not Available | Not Available | Not Available | # **EMERGENCY LIMITS** n-hexane | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |----------------------------------|---------------|---------------|---------------|---------------| | n-hexane | Hexane | 260 ppm | Not Available | Not Available | | benzene | Benzene | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | | Revised IDLH | | | solvent naphtha petroleum, light | 2500 mg/m3 | | Not Available | | Issue Date: 01/07/2020 Print Date: 01/05/2021 benzene 500 ppm Not Available # MATERIAL DATA for benzene Odour Threshold Value: 34 ppm (detection), 97 ppm (recognition) NOTE: Detector tubes for benzene, measuring in excess of 0.5 ppm, are commercially available. The relative quality of epidemiological data and quantitative health risk assessments related to documented and theoretical leukaemic deaths constitute the basis of the TLV-recommendation. One study [Dow Chemical] demonstrates a significant fourfold increase in myelogenous leukaemia for workers exposed to average benzene concentrations of about 5 ppm for an average of 9 years and that 2 out of four individuals in the study who died from leukaemia were characterised as having been exposed to average benzene levels below 2 ppm. Based on such findings the estimated risk of leukaemia in workers exposed at daily benzene concentrations of 10 ppm for 40 years is 155 times that of unexposed workers; at 1 ppm the risk falls to 1.7 times whilst at 0.1 ppm the risk is about the same in the two groups. A revision of the TLV-TWA to 0.1 ppm was proposed in 1990 but this has been revised upwards as result of industry initiatives. Typical toxicities displayed following inhalation: - At 25 ppm (8 hours): no effect - ▶ 50-150 ppm: signs of intoxication within 5 hours - ▶ 500-1500 ppm: signs of intoxication within 1 hour - ▶ 7500 ppm: severe intoxication within 30-60 minutes - 20000 ppm: fatal within 5-10 minutes Some jurisdictions require that health surveillance be conducted on occupationally exposed workers. Some surveillance should emphasise (i) demography, occupational and medical history and health advice (ii) baseline blood sample for haematological profile (iii) records of personal exposure. Odour threshold: 0.25 ppm The TLV-TWA is protective against ocular and upper respiratory tract irritation and is recommended for bulk handling of gasoline based on calculations of hydrocarbon content of gasoline vapour. A STEL is recommended to prevent mucous membrane and ocular irritation and prevention of acute depression of the central nervous system. Because of the wide variation in molecular weights of its components, the conversion of ppm to mg/m3 is approximate. Sweden recommends hexane type limits of 100 ppm and heptane and octane type limits of 300 ppm. Germany does not assign a value because of the widely differing compositions and resultant differences in toxic properties. Odour Safety Factor (OSF) OSF=0.042 (gasoline) For n-hexane Odour Threshold Value: 65 ppm NOTE: Detector tubes for n-hexane, measuring in excess of 100 ppm, are available commercially. Occupational polyneuropathy may result from exposures as low as 500 ppm (as hexane), whilst nearly continuous exposures of 250 ppm have caused neurotoxic effects in animals. Many literature reports have failed to distinguish hexane from n-hexane and on the assumption that the commercial hexane contains 30% n-hexane, a worst case recommendation for TLV is assumed to reduce the risk of peripheral neuropathies (due to the metabolites 2,5-heptanedione and 3,6-octanedione) and other adverse neuropathic effects. Concurrent exposure to chemicals (including MEK) and drugs which induce hepatic liver oxidative metabolism can reduce the time for neuropathy to appear. Odour Safety Factor(OSF) OSF=0.15 (n-HEXANE) NOTE M: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.005% w/w benzo[a]pyrene (EINECS No 200-028-5). This note applies only to certain complex oil-derived substances in Annex IV. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP NOTE E: Substances with specific effects on human health that are classified as carcinogenic, mutagenic and/ or toxic for reproduction in categories 1 or 2 are ascribed Note E if they are classified as very toxic (T+), toxic (T) or harmful (Xn). For these substances the risk phrases R20 ,R21, R22, R23, R24,R25, R26, R27, R28, R39, R68, R48 and R65 and all combinations of these risk phrases shall be proceeded by the word "Also". R45-23: May cause cancer. Also toxic by inhalation This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP # Exposure controls CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5
m/s
(200-500
f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |---|---------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | |---|--|----------------------------------| | l | 3: Intermittent, low production. | 3: High production, heavy use | | l | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Personal protection - Safety glasses with side shields - Chemical goggles # Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection # See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material. - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended # **Body protection** Hands/feet protection # See Other protection below # Overalls - PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - Ensure there is ready access to a safety shower. # Other protection - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return # Thermal hazards # Not Available # Recommended material(s) # **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: Brake Cleaner # Respiratory protection Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. Page 8 of 14 Issue Date: 01/07/2020 Version No: 5.1.1.1 Print Date: 01/05/2021 # Jo Brake Cleaner | Material | СРІ | |-------------------|-----| | BUTYL | С | | BUTYL/NEOPRENE | С | | NATURAL RUBBER | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | SARANEX-23 2-PLY | С | | TEFLON | С | | VITON | С | | VITON/CHLOROBUTYL | С | | VITON/NEOPRENE | С | ^{*} CPI - Chemwatch Performance Index NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | AX-AUS | - | AX-PAPR-AUS /
Class 1 | | up to 50 x ES | - | AX-AUS / Class
1 | - | | up to 100 x ES | - | AX-2 | AX-PAPR-2 ^ | A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** # Information on basic physical and chemical properties | Appearance | Not Available | | | |--|-------------------|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | 0.70-0.75 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not
Available | | Initial boiling point and boiling range (°C) | 47-120 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | <-30 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | 100 | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | >1 | VOC g/L | 906.09 | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion ^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. Page **9** of **14** Version No: 5.1.1.1 Jo Brake Cleaner Issue Date: **01/07/2020** Print Date: **01/05/2021** Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. # Inhaled High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Accidental ingestion of the material may be damaging to the health of the individual. # Ingestion Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and hæmorrhage. Chronic inhalation or skin exposure to n-hexane may cause peripheral neuropathy, which is damage to nerve ends in extremities, e.g. fingers, with loss of sensation and characteristic thickening. Nerve damage has been documented with chronic exposures of greater than 500 ppm. Improvement in condition does not immediately follow removal from exposure and symptoms may progress for two or three months. Recovery may take a year or more depending on severity of exposure, and may not always be complete. Exposure to n-hexane with methyl ethyl ketone (MEK) will accelerate the appearance of damage, but MEK alone will not cause the nerve damage. Other isomers of hexane do not cause nerve damage. [Source: Shell Co.] # Skin Contact Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. # Eve Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation. Limited evidence or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Harmful: danger of serious damage to health by prolonged exposure through inhalation. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Exposure to the material may cause concerns for human fertility, generally on
the basis that results in animal studies provide sufficient evidence to cause a strong suspicion of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Chronic Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised materials. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Chronic inhalation or skin exposure to n-hexane may cause peripheral neuropathy, which is damage to nerve ends in extremities, e.g. fingers, with loss of Page 10 of 14 Issue Date: 01/07/2020 Version No: 5.1.1.1 Print Date: 01/05/2021 # Jo Brake Cleaner sensation and characteristic thickening. Nerve damage has been documented with chronic exposures of greater than 500 ppm. Improvement in condition does not immediately follow removal from exposure and symptoms may progress for two or three months. Recovery may take a year or more depending on severity of exposure, and may not always be complete. Exposure to n-hexane with methyl ethyl ketone (MEK) will accelerate the appearance of damage, but MEK alone will not cause the nerve damage. Other isomers of hexane do not cause nerve damage. [Source: Shell Co.] Chronic exposure to benzene may cause headache, fatigue, loss of appetite and lassitude with incipient blood effects including anaemia and blood changes. Benzene is a myelotoxicant known to suppress bone-marrow cell proliferation and to induce haematologic disorders in humans and animals. Signs of benzene-induced aplastic anaemia include suppression of leukocytes (leukopenia), red cells (anaemia), platelets (thrombocytopenia) or all three cell types (pancytopenia). Classic symptoms include weakness, purpura, and haemorrhage. The most significant toxic effect is insidious and often reversible injury to the blood forming tissue. Leukaemia may develop. Occupational exposures have shown a relationship between exposure to benzene and production of myelogenous leukaemia. There may also be a relationship between benzene exposure and the production of lymphoma and multiple myeloma. In chronic exposure, workers exhibit signs of central nervous system lesions and impairment of hearing. Benzene haemotoxicity and leukaemogenicity involve metabolism, growth factor regulation, oxidative stress. DNA damage, cell regulation, and apoptosis, (Yoon et al Environmental Health Perspectives, 111, pp 1411-1420, 2003) Exposure to the material may cause concerns for humans owing to possible developmental toxic effects, generally on the basis that results in appropriate animal studies provide strong suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of other toxic effects. | | TOXICITY | IRRITATION | |---|--|---| | Brake Cleaner | Not Available | Not Available | | | TOXICITY | IRRITATION | | solvent naphtha petroleum,
light aliphatic | Dermal (rabbit) LD50: >1900 mg/kg ^[1] | Not Available | | iigiit aiipiiatio | Oral (rat) LD50: >4500 mg/kg ^[1] | | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 10 mg - mild | | n-hexane | Inhalation (rat) LC50: 47945.232 mg/l/4H ^[2] | | | | Oral (rat) LD50: 28710 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | | dermal (mouse) LD50: 48 mg/kg ^[2] | Eye (rabbit): 2 mg/24h - SEVERE | | benzene | Inhalation (rat) LC50: 17480.0325 mg/l/7h ^[2] | SKIN (rabbit): 20 mg/24h - moderate | | | Oral (rat) LD50: 690-1230 mg/kg ^[1] | | | Legend: | Value obtained from Europe ECHA Registered Substances - | Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified | Legend: data extracted from RTECS - Register of Toxic Effect of chemical Substances Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. # for petroleum: This product contains benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss ### This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents Brake Cleaner Carcinogenicity: Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. Mutagenicity: There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays. Reproductive Toxicity: Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed. Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. BENZENE WARNING: This substance has been classified by the IARC as Group 1:
CARCINOGENIC TO HUMANS. Inhalation (man) TCI o: 150 ppm/1v - I **Acute Toxicity** Carcinogenicity Skin Irritation/Corrosion v Reproductivity v 0 STOT - Single Exposure Serious Eye Damage/Irritation STOT - Repeated Exposure **Aspiration Hazard** ★ - Data available but does not fill the criteria for classification Leaend: Data available to make classification Data Not Available to make classification # **SECTION 12 ECOLOGICAL INFORMATION** 0 0 Respiratory or Skin sensitisation Mutagenicity # **Toxicity** | Brake Cleaner | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |--|------------------|--------------------|-------------------------------|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | solvent naphtha petroleum, light aliphatic | EC50 | 72 | Algae or other aquatic plants | =6.5mg/L | 1 | | ngm anphaso | NOEC | 72 | Algae or other aquatic plants | <0.1mg/L | 1 | | n-hexane | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 2.5mg/L | 4 | | | EC50 | 48 | Crustacea | 3877.65mg/L | 4 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 0.00528mg/L | 4 | | | EC50 | 48 | Crustacea | 9.23mg/L | 4 | | benzene | EC50 | 72 | Algae or other aquatic plants | 29mg/L | 2 | | | BCF | 24 | Algae or other aquatic plants | 10mg/L | 4 | | | EC20 | 4 | Algae or other aquatic plants | 50mg/L | 4 | | | NOEC | 480 | Crustacea | ca.0.17mg/L | 1 | Leaend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. # DO NOT discharge into sewer or waterways When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water Oils of any kind can cause: - rowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility - ▶ lethal effects on fish by coating gill surfaces, preventing respiration - asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and - adverse aesthetic effects of fouled shoreline and beaches In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation. For n-hexane: log Kow: 3.17-3.94 BOD 5 if unstated: 2.21 COD: 0.04 ThOD: 3.52 # **Environmental fate:** Transport and Partitioning: The physical properties of n-hexane that affect its transport and partitioning in the environment are: water solubility of 9.5 mg/L; log[Kow] (octanol/water partition coefficient), estimated as 3.29; Henry's law constant, 1.69 atm-m3 mol; vapor pressure, 150 mm Hg at 25 C; and log[Koc] in the range of 2.90 to 3.61. As with many alkanes, experimental methods for the estimation of the Koc parameter are lacking, so that estimates must be made based on theoretical considerations. The dominant transport process from water is volatilization. Based on mathematical models the half-life for n-hexane in bodies of water with any degree of turbulent mixing (e.g., rivers) would be less than 3 hours. For standing bodies of water (e.g. small ponds), a half-life no longer than one week (6.8 days) is estimated Based on the log octanol/water partition coefficient (i.e. log[Koc]) and the estimated log sorption coefficient (i.e. log[Koc]) n-hexane is not expected to become concentrated in biota. A calculated bioconcentration factor (BCF) of 453 for a fathead minnow further suggests a low potential for n-hexane to bioconcentrate or bioaccumulate in trophic food chains. In soil, the dominant transport mechanism for n-hexane present near the surface probably is volatilisation (based on its Henry's law constant, water solubility, vapor pressure, and Koo). While its estimated Koc values suggest a moderate ability to sorb to soil particles, n-hexane has a density (0.6603 g/mL at 20 C) well below that of water and a very low water solubility of 9.5 mg/L. n-Hexane would, therefore, be viewed as a light nonaqueous phase liquid (LNAPL), which would suggest a low potential for leaching into the lower soil depths since the n-hexane would tend to float on the top of the saturated zone of the water table. n-Hexane would generally stay near the soil surface and, if not appreciably sorbed into the soil matrix, would be expected eventually to volatilise to the atmosphere. Exceptions would involve locations with shallow groundwater tables where there were large spills of hexane products. In such cases, the n-hexane could spread out to contaminant a large volume of soil materials. Air: n-Hexane does not absorb ultraviolet (UV) light at 290 nm and is thus not expected to undergo direct photolysis reactions. The dominant tropospheric removal mechanism for n-hexane is generally regarded to be decomposition by hydroxyl radicals. Calculations assuming typical hydroxyl radical concentrations suggest a half-life of approximately 2.9 days. While n-hexane can react with nitrogen oxides to produce ozone precursors under controlled laboratory conditions, the smog-producing potential of n-hexane is very low compared to that of other alkanes or chlorinated VOCs. Hydroxyl ion reactions in the upper troposphere, therefore, are probably the primary mechanisms for n-hexane degradation in the atmosphere. As with most alkanes, n-hexane is resistant to hydrolysis Water: Although few data are available dealing explicitly with the biodegradation of n-hexane in water, neither hydrolysis nor biodegradation in surface waters appears to be rapid compared with volatilization. In surface waters, as in the atmosphere, alkanes such as n-hexane would be resistant to hydrolysis. Biodegradation is probably the most significant degradation mechanism in groundwater. The ability of Pseudomonas mendocina bacteria to metabolise n-hexane in laboratory microcosms simulating groundwater conditions has been documented. Mixed bacterial cultures as well as pure cultures are documented as capable of metabolizing n-hexane under aerobic conditions. In general, linear alkanes (such as n-hexane) are viewed as the most readily biodegradable fractions in petroleum, particularly when oxygen is present in solution. Once introduced into groundwater, n-hexane may be fairly persistent since its degradation by chemical hydrolysis is slow and opportunities for biodegradation may be limited under anoxic conditions or where nutrients such as nitrogen or phosphorus are in limited supply. Sediment and Soil: The most important biodegradation processes involve the conversion of the n-hexane to primary alcohols, aldehydes and, ultimately, into fatty acids. Similar processes are encountered with other light hydrocarbons such as heptane. In general, unless the n-hexane is buried at some depth within a soil or sediment, volatilisation is generally assumed to occur at a much more rapid rate than chemical or biochemical degradation processes. Once introduced into deeper sediments, n-hexane may be fairly persistent. Ecotoxicity: Fish LC50 (96 h): Oncorhyncus mykiss 4.14 mg/l; Pimephales promelus 2.5 mg/l (flow through); Lepomis macrochirus 4.12 mg/l Daphnia FC50 (48 h): 3.87 mg/l # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-----------------------------|------------------------------| | n-hexane | LOW | LOW | | benzene | HIGH (Half-life = 720 days) | LOW (Half-life = 20.88 days) | # Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|-----------------------| | n-hexane | MEDIUM (LogKOW = 3.9) | | benzene | HIGH (BCF = 4360) | # Mobility in soil | Ingredient | Mobility | |------------|-------------------| | n-hexane | LOW (KOC = 149) | | benzene | LOW (KOC = 165.5) | # **SECTION 13 DISPOSAL CONSIDERATIONS** # Waste treatment methods Product / Packaging disposal Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt
contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material) - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. - Containers may still present a chemical hazard/ danger when empty. • Return to supplier for reuse/ recycling if possible. - Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. # **SECTION 14 TRANSPORT INFORMATION** # Labels Required Issue Date: 01/07/2020 Print Date: 01/05/2021 3YE HAZCHEM # Land transport (ADG) | UN number | 1268 | |------------------------------|---| | UN proper shipping name | PETROLEUM DISTILLATES, N.O.S. or PETROLEUM PRODUCTS, N.O.S. (contains solvent naphtha petroleum, light aliphatic and benzene) | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | Packing group | | | Environmental hazard | Environmentally hazardous | | Special precautions for user | Special provisions Not Applicable Limited quantity 1 L | # Air transport (ICAO-IATA / DGR) | UN number | 1268 | | |------------------------------|--|--| | UN proper shipping name | Petroleum distillates, n.o.s. (contains solvent naphtha petroleum, petroleum, light aliphatic and benzene) | light aliphatic and benzene); Petroleum products, n.o.s. (contains solvent naphtha | | Transport hazard class(es) | ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable | | | Transport nazaro ciass(es) | ERG Code 3H | | | Packing group | II | | | Environmental hazard | Environmentally hazardous | | | Special precautions for user | Special provisions | A3 | | | Cargo Only Packing Instructions | 364 | | | Cargo Only Maximum Qty / Pack | 60 L | | | Passenger and Cargo Packing Instructions | 353 | | | Passenger and Cargo Maximum Qty / Pack | 5L | | | Passenger and Cargo Limited Quantity Packing Instructions | Y341 | | | Passenger and Cargo Limited Maximum Qty / Pack | 1L | # Sea transport (IMDG-Code / GGVSee) | UN number | 1268 | |------------------------------|---| | UN proper shipping name | PETROLEUM DISTILLATES, N.O.S. or PETROLEUM PRODUCTS, N.O.S. (contains solvent naphtha petroleum, light aliphatic and benzene) | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | Packing group | | | Environmental hazard | Marine Pollutant | | Special precautions for user | EMS Number F-E , S-E Special provisions Not Applicable Limited Quantities 1 L | # Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** Australia Inventory of Chemical Substances (AICS) # Safety, health and environmental regulations / legislation specific for the substance or mixture # SOLVENT NAPHTHA PETROLEUM, LIGHT ALIPHATIC(64742-89-8.) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Australia Hazardous Substances Information System - Consolidated Lists Monographs International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft N-HEXANE(110-54-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Page 14 of 14 Version No: 5.1.1.1 Jo Brake Cleaner Issue Date: 01/07/2020 Print Date: 01/05/2021 Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists BENZENE(71-43-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia - New South Wales Work Health and Safety Regulation 2011 Restricted carcinogens Australia - Northern Territories Work Health and Safety National Uniform Legislation Regulations- Restricted carcinogens Australia - Queensland Work Health and Safety Regulation - Restricted Carcinogens Australia - South Australia - Work Health and Safety Regulations 2012 - Restricted carcinogens Australia - Tasmania - Work Health and Safety Regulations 2012 - Restricted carcinogens Australia - Western Australia Carcinogenic substances to be used only for purposes approved Australia Exposure Standards Australia Hazardous Substances Information System - Consolidated Lists Australia Inventory of Chemical Substances (AICS) Australia Work Health and Safety Regulations 2016 - Hazardous chemicals (other than lead) requiring health monitoring Australia Work Health and Safety Regulations 2016 - Restricted carcinogens International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs | National Inventory | Status | |-------------------------------|--| | Australia - AICS | Υ | | Canada - DSL | Y | | Canada - NDSL | N (n-hexane; solvent naphtha petroleum, light aliphatic; benzene) | | China - IECSC | Y | | Europe - EINEC / ELINCS / NLP | Y | | Japan - ENCS | N (solvent naphtha petroleum, light aliphatic) | | Korea - KECI | Y | | New Zealand - NZIoC | Y | | Philippines - PICCS | Y | | USA - TSCA | Y | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | # **SECTION 16 OTHER INFORMATION** # Other information The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index end of SDS